Book Review – Neural Engineering, 3rd Edition (Bin He, Editor)


May 2020

Bruce Wheeler, PhD

Dr. Bin He is to be congratulated on pulling together an even stronger set of contributors and topics to make the third edition of Neural Engineering (Bin He, editor; Springer) a significant enhancement over the second edition. Easiest to note are the inclusion of 22 chapters (an increase of 3), with nine new topics, and three previous topics presented by new authors with fresh perspectives. Perhaps over half the material is new. A quick additional look shows that the new topics are quite timely.

Transfer Learning for Brain-Computer Interfaces: Euclidean Alignment and Label Alignment


May 2020

Dongrui Wu and He He

Ministry of Education Key Laboratory of Image Processing and Intelligent Control, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, China.

A brain-computer interface (BCI) system [1], [2] acquires the brain signal, decodes it, and then translates it into control commands for external devices, so that a user can interact with his/her surroundings using thoughts directly.

Re-designing the Wheel: The High Relevance of EEG in Studying Brain Networks


May 2020

Abbas Sohrabpour and Bin He

There seem to be two major principles that govern brain function; functional segregation and functional integration [1]. The brain is a highly specialized, and at the same time, a highly integrated organ. Spatially segregated regions are tuned to perform special functions optimally (functional segregation), and at a higher level, multiple regions need to pull resources together, and integrate functions, to perform complex tasks (functional integration).

Overview of the IEEE Standards Roadmap on Neurotechnologies for Brain-Machine Interfacing


May 2020

Ricardo Chavarriaga, Sumit Soman, Zach McKinney, Jose L Contreras-Vidal, Stephen F Bush


Brain-machine interfacing (BMI) systems are a product of multiple integrated technologies, including sensing modules for biosignal acquisition and processing, computational systems for signal decoding and system control, and actuation modules for providing sensory, mechanical, or electrical feedback to the user, and/or for effecting desired physical actions.

Creating a neuroprosthesis for active tactile exploration of textures


December 2019

Original paper: J. E. O’Doherty*, S. Shokur *, L. E. Medina, M. A. Lebedev, M. A. L. Nicolelis. Creating a neuroprosthesis for active tactile exploration of textures (2019). Proceedings of the National Academy of Sciences.
Solaiman Shokur

Sensory neuroprostheses offer the promise of restoring perceptual function to people with impaired sensation [1], [2]. In such devices, diminished sensory modalities (e.g., hearing [3], vision [4], [5], or cutaneous touch [6]–[8]) are reenacted through streams of artificial input to the nervous system, typically using electrical stimulation of nerve fibers in the periphery [9] or neurons in the central nervous system [10]. Restored cutaneous touch, in particular, would be of great benefit for the users of upper-limb prostheses, who place a high priority on the ability to perform functions without the necessity to constantly engage visual attention [11]. This could be achieved through the addition of artificial somatosensory channels to the prosthetic device [1].

IR-powered, ultra-small, implantable optogenetic stimulator


December 2019

Takashi Tokuda1, Makito Haruta2, Kiyotaka Sasagawa2, and Jun Ohta2

1:    Institute of Innovative Research, Tokyo Institute of Technology, Japan
2:    Graduate School of Science and Technology, Nara Institute of Science and Technology, Japan

Corresponding author: Takashi Tokuda

Since the rise of optogenetics, various types of optical stimulators have been proposed and realized. These include wired and wireless, single-site and multi-site, and with and without integration of other measurement / stimulation modalities. Naturally there is a trend to pursue very-small, light-weight devices that can be implanted or directly attached to animals. Such devices enable freely moving optogenetic experiments. Freely moving situations are preferred especially in behavioral experiments. Some research groups have been actively developing small, wireless, optogenetic stimulators [1-4]. Considering the importance of small size and lightness, most of the devices are developed with battery-less designs, meaning that power is wirelessly transferred during the operation. Realistic power transfer schemes for such devices are limited to either electromagnetic (RF-) or photovoltaic (PV-) powering.

Notes from the 2019 IEEE SMC Brain-Machine Interface Workshop


December 2019

Tiago H. Falk, Christoph Guger, Michael Smith, and Ljiljana Trajković

From October 6-9, 2019, the IEEE Brain-Machine Interface (BMI) Workshop was held in Bari, Italy, as part of the Annual IEEE Systems, Man, and Cybernetics (SMC) Society Conference. This is the flagship Workshop organized by the IEEE SMC Brain-Machine Interface Systems Technical Committee. The goal of the Workshop is to provide a forum for attendees to present recent research results, to interact with experts from around the world from both academia and industry, and to receive hands-on training across different aspects of the neurotechnology development chain. This year, the theme of the Workshop was “From Assistive Technologies to Affective Computing: What’s Next for Neurotechnologies?” Its focus was placed on how industry and industry-academia partnerships have been paving the road for next-generation BMIs.

BIO(BRAIN)-X International Summer School


October 2019

The 18th International Summer School on BIO(BRAIN)-X: Biocomplexity, Biodesign, Bioinnovation, Biomanufacturing and Bioentrepreneurship, sponsored by the NSF, the University of Houston Biomedical Engineering Department and technically co-sponsored by the IEEE Brain Initiative and the IEEE Engineering in Medicine and Biology Society, was held at the Chania Academy, Crete, June 9-15, 2019. This summer school was a continuation of previous summer schools. Twenty-five students and eight distinguished faculty attended the 18th summer school. The NSF, the IEEE Brain Initiative and the University of Houston co-sponsored 25 students.

Transcranial Focal Stimulation Using Concentric Ring Electrodes


October 2019

Walter G. Besio

• Statement of the challenge/opportunity: gaps, opportunities, and drivers

About 12 in 100 people worldwide, or 800 million, are suffering from neurological disorders such as epilepsy (having multiple recurrent seizures which are uncontrollable electrical activity of the brain), chronic pain, Parkinson’s Disease, etc. [1]. Around 450 million people worldwide are affected by psychiatric disorders [1]. Despite decades of research, new drugs, and advances in surgical therapy, 30% or more of the patients with epilepsy or psychiatric disorders do not respond to medical treatment or suffer from its severe side effects [2]. Epilepsy surgery and devices can control seizures in some patients with drug-resistant epilepsy but require advanced and often invasive diagnostic neurophysiology techniques. New solutions are needed for alternatives to drugs and to more invasive and expensive surgeries.

About BrainInsight

BrainInsight, the IEEE Brain Initiative eNewsletter, is a quarterly online publication, featuring practical and timely information and forward-looking commentary on neurotechnologies. BrainInsight describes recent breakthroughs in research, primers on methods of interests, or report recent events such as conferences or workshops.

Managing Editor

Ricardo Chavarriaga
Zurich University of Applied Science(ZHAW)
Read More


Author Guidelines & Submission Information