Wearable Microwave Imager and BMI Development

RESEARCH
Joel Libove, David Schriebman and Mike Ingle

Ultrawideband microwave pulses having widths of 20-50 picoseconds can penetrate the skull and travel into deep brain tissues. Recently developed radar integrated circuits can generate customizable pulses, launch them into the cortex, and monitor the resulting reflections from brain tissue boundaries. The amplitude of these reflections varies slightly, in real time, due to metabolic changes in brain tissue undergoing localized activity, enabling functional activity to be spatially mapped. The arrival time of these reflections also varies with the pulsation of arterial walls, additionally facilitating real-time imaging of neurovascular structures. A helmet under development, with 128 dual-channel radar ICs shows promise for enabling a wearable brain machine interface.

The Potential of Neuroimaging-Guided Sensorimotor Rehabilitation

RESEARCH
James Sulzer, Roger Gassert

Stroke, caused by a cerebrovascular lesion, is one of the most debilitating diseases in the world. While physical and occupational therapy play an important role in the rehabilitation process, we are still unable to determine effective treatment strategies for the reduction of stroke-related impairments. It appears that reducing impairments after stroke may be mostly spontaneous and that therapy primarily supports compensation. Despite the source of the injury in the brain, treatment strategies are only at the limb level. The focus on the limbs while brain reorganization goes unmonitored could controversially result in compensatory neuroplasticity that limits recovery.

Exploiting DNA Sequencing Technology for High-Throughput Neuroanatomy

RESEARCH
Justus M Kebschull

The brain is the most complex organ of the body, formed by billions of neurons and trillions of synapses, all precisely connected by 100,000 miles of wiring. Understanding how the brain processes information relies, at least in part, on understanding these connections. However, in mammals, we still lack a fine-resolution map of neural connectivity.

Impressions from the 2017 IEEE Brain Data Bank Competition – Boston

NEW: STUDENT CORNER

Note from the editor: As part of the IEEE commitment to educating a new generation of engineers, the IEEE Brain Initiative eNewsletter BrainInsight is launching a new space called the “Student Corner” for young researchers to present their opinions on current events or research topics.

Can Creativity be Assessed? Your Brain on Art, When Art and Science Meet.

RESEARCH
Mario Ortiz, José L. Contreras-Vidal, José M. Azorín

Music sounds, body dances and hands draw responding to each other while a projector screen shows brain waves of a saxophonist, a dancer and a visual artist, and the real-time motion captured of the dancer shown as an avatar.

Decoding Inner Speech from Brain Signals

RESEARCH
Stephanie Martin

Many people cannot talk or communicate due to various neurological conditions. These people would benefit from a speech device that can decode their inner speech directly from brain activity. However, investigating and decoding inner speech processes has remained a challenging task due to the lack of behavioral output and the difficulty in labeling precisely the content of inner speech.

Message from the Editor: A Year in Review

OPINION
R. Chavarriaga

As we enter a new year, it is a good time to look back at the activities of the IEEE Brain Initiative during the past 12 months. Our community has been extremely engaged on the advancement of neurotechnologies.

Brain Machine Interfaces, Artificial Intelligence and Neurorights

RESEARCH
M. Ienca

Progress in neurotechnology is critical to improve our understanding of the human brain and improve the delivery of neurorehabilitation and mental health services at the global level. We are now entering a new phase of neurotechnology development characterized by higher and more systematic public funding, diversified private sector investment, and increased availability of non-clinical neurodevices.

Could a Man Mistake a Hat for His Wife?

RESEARCH
C. Guger, G. Schalk, C. Kapeller

In 1985, Dr. Oliver Sacks published “The Man Who Mistook His Wife for a Hat,” which included the case of a man with visual agnosia who had trouble identifying faces. This case made many people think about what a remarkable challenge our brain routinely solves every day.