2019 – Issue 3

Creating a neuroprosthesis for active tactile exploration of textures

RESEARCH

December 2019

Original paper: J. E. O’Doherty*, S. Shokur *, L. E. Medina, M. A. Lebedev, M. A. L. Nicolelis. Creating a neuroprosthesis for active tactile exploration of textures (2019). Proceedings of the National Academy of Sciences. https://doi.org/10.1073/pnas.1908008116
Solaiman Shokur

Sensory neuroprostheses offer the promise of restoring perceptual function to people with impaired sensation [1], [2]. In such devices, diminished sensory modalities (e.g., hearing [3], vision [4], [5], or cutaneous touch [6]–[8]) are reenacted through streams of artificial input to the nervous system, typically using electrical stimulation of nerve fibers in the periphery [9] or neurons in the central nervous system [10]. Restored cutaneous touch, in particular, would be of great benefit for the users of upper-limb prostheses, who place a high priority on the ability to perform functions without the necessity to constantly engage visual attention [11]. This could be achieved through the addition of artificial somatosensory channels to the prosthetic device [1].

IR-powered, ultra-small, implantable optogenetic stimulator

RESEARCH

December 2019

Takashi Tokuda1, Makito Haruta2, Kiyotaka Sasagawa2, and Jun Ohta2

1:    Institute of Innovative Research, Tokyo Institute of Technology, Japan
2:    Graduate School of Science and Technology, Nara Institute of Science and Technology, Japan

Corresponding author: Takashi Tokuda
E-mail: tokuda@ee.e.titecha.ac.jp

Since the rise of optogenetics, various types of optical stimulators have been proposed and realized. These include wired and wireless, single-site and multi-site, and with and without integration of other measurement / stimulation modalities. Naturally there is a trend to pursue very-small, light-weight devices that can be implanted or directly attached to animals. Such devices enable freely moving optogenetic experiments. Freely moving situations are preferred especially in behavioral experiments. Some research groups have been actively developing small, wireless, optogenetic stimulators [1-4]. Considering the importance of small size and lightness, most of the devices are developed with battery-less designs, meaning that power is wirelessly transferred during the operation. Realistic power transfer schemes for such devices are limited to either electromagnetic (RF-) or photovoltaic (PV-) powering.

Notes from the 2019 IEEE SMC Brain-Machine Interface Workshop

EVENT

December 2019

Tiago H. Falk, Christoph Guger, Michael Smith, and Ljiljana Trajković

From October 6-9, 2019, the IEEE Brain-Machine Interface (BMI) Workshop was held in Bari, Italy, as part of the Annual IEEE Systems, Man, and Cybernetics (SMC) Society Conference. This is the flagship Workshop organized by the IEEE SMC Brain-Machine Interface Systems Technical Committee. The goal of the Workshop is to provide a forum for attendees to present recent research results, to interact with experts from around the world from both academia and industry, and to receive hands-on training across different aspects of the neurotechnology development chain. This year, the theme of the Workshop was “From Assistive Technologies to Affective Computing: What’s Next for Neurotechnologies?” Its focus was placed on how industry and industry-academia partnerships have been paving the road for next-generation BMIs.

About BrainInsight

BrainInsight, the IEEE Brain Initiative eNewsletter, is a quarterly online publication, featuring practical and timely information and forward-looking commentary on neurotechnologies. BrainInsight describes recent breakthroughs in research, primers on methods of interests, or report recent events such as conferences or workshops.


Managing Editor

Ricardo Chavarriaga
Zurich University of Applied Science(ZHAW)
Read More


Contribute

Author Guidelines & Submission Information