RESEARCH
October 2019
Josef Faller, Jennifer Cummings, Sameer Saproo, Paul Sajda
High arousal can adversely affect task performance. Walking over a balance beam that sits 10 cm over the floor, for example, will be easier for most people than walking over a beam that is fixed at a height of 10 m, where a misstep could lead to grave injury. Another example is referred to as “pilot induced oscillations” (PIOs), where airplane pilots – under high arousal – dangerously overcompensate for small control errors in a way that can quickly escalate to losing control over and/or crashing the plane. In 1908, Yerkes & Dodson first formally described an inverse U-shape relationship between arousal and performance under high task difficulty [1]( see Figure 1.A). From the perspective of neurophysiology, there is evidence in support of the hypothesis that an interplay between the anterior cingulate cortex (ACC) and locus coeruleus (LC) – regions implicated in monitoring task performance and mediating stress responses – may play a critical role in explaining this phenomenon [2,3](see Figure 1.B). In a previous study, our group identified EEG signatures of PIO propensity or task-dependent arousal in a virtual flight task, a so called “boundary avoidance task” (BAT), where difficulty progressively increases over 90 seconds to induce PIOs and task failure, i.e. crashing the plane into a boundary [4](see Figure 1.C).