2018 – Issue 2

Cortico-Striatal Circuits are a Key Component of Learning in brain-machine interface tasks

Ryan Neely, Aaron Koralek, Vivek Athalye, Rui Costa, Jose Carmena

Establishing a functional link between the human nervous system and computer systems could enable a broad range of applications, from medical treatments to consumer-focused products. Brain-machine interface (BMI) technologies have shown early promise in restoring communication and movement capabilities to paralyzed individuals, and there remains a strong research as well as commercial interest in developing these technologies further. Many BMI systems work by measuring neural signals, and “decoding” these signals to produce activity in an artificial effector- for example, a computer cursor or robotic appendage…

Wearable Microwave Imager and BMI Development

Joel Libove, David Schriebman and Mike Ingle

Ultrawideband microwave pulses having widths of 20-50 picoseconds can penetrate the skull and travel into deep brain tissues. Recently developed radar integrated circuits can generate customizable pulses, launch them into the cortex, and monitor the resulting reflections from brain tissue boundaries. The amplitude of these reflections varies slightly, in real time, due to metabolic changes in brain tissue undergoing localized activity, enabling functional activity to be spatially mapped. The arrival time of these reflections also varies with the pulsation of arterial walls, additionally facilitating real-time imaging of neurovascular structures. A helmet under development, with 128 dual-channel radar ICs shows promise for enabling a wearable brain machine interface.

The Potential of Neuroimaging-Guided Sensorimotor Rehabilitation

James Sulzer, Roger Gassert

Stroke, caused by a cerebrovascular lesion, is one of the most debilitating diseases in the world. While physical and occupational therapy play an important role in the rehabilitation process, we are still unable to determine effective treatment strategies for the reduction of stroke-related impairments. It appears that reducing impairments after stroke may be mostly spontaneous and that therapy primarily supports compensation. Despite the source of the injury in the brain, treatment strategies are only at the limb level. The focus on the limbs while brain reorganization goes unmonitored could controversially result in compensatory neuroplasticity that limits recovery.

Exploiting DNA Sequencing Technology for High-Throughput Neuroanatomy

Justus M Kebschull

The brain is the most complex organ of the body, formed by billions of neurons and trillions of synapses, all precisely connected by 100,000 miles of wiring. Understanding how the brain processes information relies, at least in part, on understanding these connections. However, in mammals, we still lack a fine-resolution map of neural connectivity.

About BrainInsight

BrainInsight, the IEEE Brain Initiative eNewsletter, is a quarterly online publication, featuring practical and timely information and forward-looking commentary on neurotechnologies. BrainInsight describes recent breakthroughs in research, primers on methods of interests, or report recent events such as conferences or workshops.

Managing Editor

Ricardo Chavarriaga
Center for Neuroprosthetics, EPFL, Switzerland
Read More


Author Guidelines & Submission Information